Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Diagnostics (Basel) ; 13(11)2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20235054

ABSTRACT

BACKGROUND AND MOTIVATION: Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are not practical for clinical settings and therefore do not give accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning (EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks. METHODOLOGY: The system consists of a cascade of quality control, ResNet-UNet-based hybrid deep learning for lung segmentation, and seven models using TL-based classification followed by five types of EDL's. To prove our hypothesis, five different kinds of data combinations (DC) were designed using a combination of two multicenter cohorts-Croatia (80 COVID) and Italy (72 COVID and 30 controls)-leading to 12,000 CT slices. As part of generalization, the system was tested on unseen data and statistically tested for reliability/stability. RESULTS: Using the K5 (80:20) cross-validation protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical tests proved positive for reliability and stability. CONCLUSION: EDL showed superior performance to TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for both (i) seen and (ii) unseen paradigms, validating both our hypotheses.

2.
Diagnostics (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-2199863

ABSTRACT

BACKGROUND: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the "COVLIAS 2.0-cXAI" system using four kinds of class activation maps (CAM) models. METHODOLOGY: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. RESULTS: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. CONCLUSIONS: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.

3.
Diagnostics (Basel) ; 12(11)2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-2099396

ABSTRACT

Background: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient. Methodology: This study uses a Convolutional neural network (CNN) model for the feature extraction of the images and discovers the most similar patients. The input queries patients from the hospital database with similar chest X-ray images. It uses a similarity metric for the similarity computation of the images. Results: This methodology recommends the doctors, medicines, and resources associated with similar patients to a COVID-19 patients being admitted to the hospital. The performance of the proposed RS is verified with five different feature extraction CNN models and four similarity measures. The proposed RS with a ResNet-50 CNN feature extraction model and Maxwell-Boltzmann similarity is found to be a proper framework for treatment recommendation with a mean average precision of more than 0.90 for threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more than 0.95. Conclusions: Overall, an RS with a CNN model and image similarity is proven as an efficient tool for the proper management of resources during the peak period of pandemics and can be adopted in clinical settings.

4.
Diagnostics (Basel) ; 12(9)2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2009973

ABSTRACT

BACKGROUND AND MOTIVATION: COVID-19 has resulted in a massive loss of life during the last two years. The current imaging-based diagnostic methods for COVID-19 detection in multiclass pneumonia-type chest X-rays are not so successful in clinical practice due to high error rates. Our hypothesis states that if we can have a segmentation-based classification error rate <5%, typically adopted for 510 (K) regulatory purposes, the diagnostic system can be adapted in clinical settings. METHOD: This study proposes 16 types of segmentation-based classification deep learning-based systems for automatic, rapid, and precise detection of COVID-19. The two deep learning-based segmentation networks, namely UNet and UNet+, along with eight classification models, namely VGG16, VGG19, Xception, InceptionV3, Densenet201, NASNetMobile, Resnet50, and MobileNet, were applied to select the best-suited combination of networks. Using the cross-entropy loss function, the system performance was evaluated by Dice, Jaccard, area-under-the-curve (AUC), and receiver operating characteristics (ROC) and validated using Grad-CAM in explainable AI framework. RESULTS: The best performing segmentation model was UNet, which exhibited the accuracy, loss, Dice, Jaccard, and AUC of 96.35%, 0.15%, 94.88%, 90.38%, and 0.99 (p-value <0.0001), respectively. The best performing segmentation-based classification model was UNet+Xception, which exhibited the accuracy, precision, recall, F1-score, and AUC of 97.45%, 97.46%, 97.45%, 97.43%, and 0.998 (p-value <0.0001), respectively. Our system outperformed existing methods for segmentation-based classification models. The mean improvement of the UNet+Xception system over all the remaining studies was 8.27%. CONCLUSION: The segmentation-based classification is a viable option as the hypothesis (error rate <5%) holds true and is thus adaptable in clinical practice.

5.
J Med Syst ; 46(10): 62, 2022 Aug 21.
Article in English | MEDLINE | ID: covidwho-2000034

ABSTRACT

Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As the first study of its kind, "COVLIAS 1.0-Unseen" proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL is superior to SDL. In a multicenter study, 10,000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models and predict from test data, leading to four combinations-two Unseen sets: (i) train-CRO:test-ITA, (ii) train-ITA:test-CRO, and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web-based system. After HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods
6.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1987841

ABSTRACT

The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.

7.
Diagnostics (Basel) ; 12(5)2022 May 21.
Article in English | MEDLINE | ID: covidwho-1953134

ABSTRACT

BACKGROUND: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. METHODOLOGY: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models-namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet-were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. RESULTS: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests-namely, the Mann-Whitney test, paired t-test, and Wilcoxon test-demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. CONCLUSIONS: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.

8.
Diagnostics (Basel) ; 12(7)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1911240

ABSTRACT

Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.

9.
Diagnostics ; 12(6):1482, 2022.
Article in English | MDPI | ID: covidwho-1894262

ABSTRACT

Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the 'COVLIAS 2.0-cXAI';system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.

10.
Diagnostics ; 12(5):1283, 2022.
Article in English | MDPI | ID: covidwho-1857785

ABSTRACT

Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models-namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet-were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests-namely, the Mann–Whitney test, paired t-test, and Wilcoxon test-demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.

11.
Diagnostics (Basel) ; 12(5)2022 May 14.
Article in English | MEDLINE | ID: covidwho-1855558

ABSTRACT

Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.

12.
Comput Biol Med ; 146: 105571, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850900

ABSTRACT

BACKGROUND: COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. METHOD: ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. RESULTS: Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. CONCLUSIONS: Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.


Subject(s)
COVID-19 , Deep Learning , COVID-19/diagnostic imaging , COVID-19 Testing , Humans , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Neural Networks, Computer , Reproducibility of Results , Tomography, X-Ray Computed/methods
13.
Metabolites ; 12(4)2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1810024

ABSTRACT

Parkinson's disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac&nbsp;autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework.

14.
Diagnostics (Basel) ; 12(3)2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1760432

ABSTRACT

Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks.

15.
Insights Imaging ; 13(1): 44, 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1741953

ABSTRACT

As of September 18th, 2021, global casualties due to COVID-19 infections approach 200 million, several COVID-19 vaccines have been authorized to prevent COVID-19 infection and help mitigate the spread of the virus. Despite the vast majority having safely received vaccination against SARS-COV-2, the rare complications following COVID-19 vaccination have often been life-threatening or fatal. The mechanisms underlying (multi) organ complications are associated with COVID-19, either through direct viral damage or from host immune response (i.e., cytokine storm). The purpose of this manuscript is to review the role of imaging in identifying and elucidating multiorgan complications following SARS-COV-2 vaccination-making clear that, in any case, they represent a minute fraction of those in the general population who have been vaccinated. The authors are both staunch supporters of COVID-19 vaccination and vaccinated themselves as well.

16.
Diagnostics (Basel) ; 12(3)2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1731968

ABSTRACT

BACKGROUND AND MOTIVATION: The novel coronavirus causing COVID-19 is exceptionally contagious, highly mutative, decimating human health and life, as well as the global economy, by consistent evolution of new pernicious variants and outbreaks. The reverse transcriptase polymerase chain reaction currently used for diagnosis has major limitations. Furthermore, the multiclass lung classification X-ray systems having viral, bacterial, and tubercular classes-including COVID-19-are not reliable. Thus, there is a need for a robust, fast, cost-effective, and easily available diagnostic method. METHOD: Artificial intelligence (AI) has been shown to revolutionize all walks of life, particularly medical imaging. This study proposes a deep learning AI-based automatic multiclass detection and classification of pneumonia from chest X-ray images that are readily available and highly cost-effective. The study has designed and applied seven highly efficient pre-trained convolutional neural networks-namely, VGG16, VGG19, DenseNet201, Xception, InceptionV3, NasnetMobile, and ResNet152-for classification of up to five classes of pneumonia. RESULTS: The database consisted of 18,603 scans with two, three, and five classes. The best results were using DenseNet201, VGG16, and VGG16, respectively having accuracies of 99.84%, 96.7%, 92.67%; sensitivity of 99.84%, 96.63%, 92.70%; specificity of 99.84, 96.63%, 92.41%; and AUC of 1.0, 0.97, 0.92 (p < 0.0001 for all), respectively. Our system outperformed existing methods by 1.2% for the five-class model. The online system takes <1 s while demonstrating reliability and stability. CONCLUSIONS: Deep learning AI is a powerful paradigm for multiclass pneumonia classification.

17.
Eur J Radiol ; 149: 110188, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1664888

ABSTRACT

SARS-CoV-2 infection, responsible for COVID-19 outbreak, can cause cardiac complications, worsening outcome and prognosis. In particular, it can exacerbate any underlying cardiovascular condition, leading to atherosclerosis and increased plaque vulnerability, which may cause acute coronary syndrome. We review current knowledge on the mechanisms by which SARS-CoV-2 can trigger endothelial/myocardial damage and cause plaque formation, instability and deterioration. The aim of this review is to evaluate current non-invasive diagnostic techniques for coronary arteries evaluation in COVID-19 patients, such as coronary CT angiography and atherosclerotic plaque imaging, and their clinical implications. We also discuss the role of artificial intelligence, deep learning and radiomics in the context of coronary imaging in COVID-19 patients.


Subject(s)
COVID-19 , Coronary Artery Disease , Plaque, Atherosclerotic , Artificial Intelligence , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Vessels , Humans , Plaque, Atherosclerotic/diagnostic imaging , SARS-CoV-2
18.
Eur J Radiol ; 148: 110164, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1625967

ABSTRACT

SARS-COV 2 is recognized to be responsible for a multi-organ syndrome. In most patients, symptoms are mild. However, in certain subjects, COVID-19 tends to progress more severely. Most of the patients infected with SARS-COV2 fully recovered within some weeks. In a considerable number of patients, like many other viral infections, various long-lasting symptoms have been described, now defined as "long COVID-19 syndrome". Given the high number of contagious over the world, it is necessary to understand and comprehend this emerging pathology to enable early diagnosis and improve patents outcomes. In this scenario, AI-based models can be applied in long-COVID-19 patients to assist clinicians and at the same time, to reduce the considerable impact on the care and rehabilitation unit. The purpose of this manuscript is to review different aspects of long-COVID-19 syndrome from clinical presentation to diagnosis, highlighting the considerable impact that AI can have.


Subject(s)
COVID-19 , Artificial Intelligence , COVID-19/complications , Humans , RNA, Viral , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
19.
Diagnostics (Basel) ; 11(12)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1572404

ABSTRACT

(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020-2021 were semiautomated or automated but not accurate, user-friendly, and industry-standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription-polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland-Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.

20.
Front Biosci (Landmark Ed) ; 26(11): 1312-1339, 2021 11 30.
Article in English | MEDLINE | ID: covidwho-1552205

ABSTRACT

Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.


Subject(s)
Arteries/diagnostic imaging , Atherosclerosis/diagnostic imaging , COVID-19/physiopathology , Cardiovascular Diseases/diagnostic imaging , Nutritional Status , Algorithms , COVID-19/diagnostic imaging , COVID-19/virology , Humans , Risk Factors , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL